Intended for Buffalo Niagara Waterkeepers

Document type 30% Design Submission (FINAL)

Date January 2023

Feasibility & Design of Floodplain Reconnection of Buffalo Creek

Feasibility & Design of Floodplain Reconnection of Buffalo Creek

Project name	Feasibility & Design of Floodplain Reconnection of Buffalo Creek
Project no.	1940102804
Recipient	Buffalo Niagara Waterkeepers
Document type	30% Design Submittal (FINAL)
Version	2
Date	January 6, 2023
Prepared by	Corey Erikson, Kyle Buelow, Ryan Pierce
Checked by	Shaun Gannon, P.E., D.WRE, P.H., CFM, PMP
Approved by	Michelle McEntire, PE

Ramboll Harro East Building 400 Andrews Street, Suite 710 Rochester, NY 14604 USA

T 585-295-7700 F 585-263-2869 https://ramboll.com

Contents

1.	Site Plan and Typical Section	2
2.	Bank and Channel Stabilization Features	3
3.	Planting Plan	4
4.	Cost Estimate	5

1. Site Plan and Typical Section

<u>LEGEND</u>

----- WALKING TRAIL TO BE RESTORED

BOUNDARY OF FLOODPLAIN ----- PROPERTY LINE

<u>NOTES</u>

- 1. DESIGN REQUIREMENTS FROM NATIONAL GRID WILL BE COORDINATED DURING THE FINAL DESIGN PHASE. BASED ON HISTORICAL PROJECTS, NATIONAL GRID USUALLY REQUIRES CLEARANCE AROUND THE ELECTRICAL TOWERS FOR ACCESS AND MAINTENANCE.
- 2. LOCATION AND DESIGN OF THE WALKING TRAIL WILL BE DISCUSSED AND COMPLETED DURING THE FINAL DESIGN PHASE. FOR THE PRELIMINARY DESIGN PHASE IT IS ASSUMED THE TRAIL WOULD BE RESTORED IN A SIMILAR LOCATION TO THE EXISTING.

	IT IS A VIOLATION OF LAW FOR ANY PERSON, THIS I UNLESS ACTING UNDER THE DIRECTION OF A WHEN LICENSED ENGINEER, TO ALTER THIS DOCUMENT. DRAW	DRAWING WAS PREPARED AT THE N DRAWINGS ARE REPRODUCED E VING IS NOT SCALABLE IF NO SCA	E SCALE INDICATED. INACCURACIES IN THE STATED SO BY ANY MEANS. USE THE GRAPHIC SCALE BAR TO DET LE BAR IS PRESENT.	ALE MAY BE INTRODUCED ERMINE THE ACTUAL SIZE.		
PRELIMINARY NOT FOR CONSTRUCTION DATE: 12/19/2022	BUFFALO NIAGARA WATERKEEPER	A 12/19/22 NO. DATE	DRAFT 30% DESIGN PACKAGE REVISION	DESIGNER / PROFESSIONAL ENGINEER RESPONSIBLE DESIGNED BY PROJECT NO. S. GANNON 1940102804 CHECKED BY DATE M. MCENTIRE DECEMBER 24 DRAWN BY C. ERICKSON	Image: Second state in the second s	C. FEASIBILITY AND DESIG RECONNECTION OF BUF ADDRESS BUFFALO, NEW YORK

FFALO CREEK

GN OF FLOODPLAIN FLOOD BENCH - PLAN & TYPICAL SECTION

DRAWING LOCATION

2. Bank and Channel Stabilization Features

Section 2 includes bank and channel stabilization features that should be further evaluated in the next phase. Prior to completing the 60% Submittal, a detailed ice jam analysis should be completed to identify the type and exact location for installing bank and channel stabilization features.

Vegetated Coir Logs

Vegetative plugs placed in densely-packed coconut fiber rolls (Figure 1)

Issue Solution Addresses

Vegetated coir logs prevent erosion by reinforcing the streambank and acting as a natural retaining wall against water velocity. The vegetated rolls are flexible and can mold to the existing curvature of the streambank. They are also highly effective in developing stream channel banks by trapping sediment behind the fiber rolls and improving conditions for vegetation establishment on the water's edge.

Ideal Location

Coir logs are suitable in low energy environments and work best in areas with minimal ice build-up. High energy environmental can dislodge the logs or cause the logs to break down before rooting the vegetative plugs. Gradual slopes less than 1V:2H (vertical:horizontal) are preferred.

Design and Construction Considerations

- Site-Specific Conditions: Vegetated coir logs are suitable in water velocities of 8 ft/s or less.
- Materials: Pre-constructed coir logs, coir netting (optional), vegetated plugs (pre-rooted is preferred), rot-resistant wooden stakes, and erosion control blanket (optional). Erosion control blankets and coir netting are recommended and can reduce the need for maintenance long-term.
- Construction: The density of vegetated plugs depends on the fiber roll diameter (Table 1). The root system shall be placed below the water level. The stakes shall be placed on both sides of the roll every 2-4 ft, depending on anticipated water velocity.

Table 1. Vegetated Plug Density

Log Diameter (inch)	Vegetated Plug Density (plug/linear foot)
8	1
12	2
16	3
20	5

- Spacing: If the shoreline is greater than 10 ft, the coir logs shall be laced together in a continuous line with no gapping between rolls.
- Placement: Install the first row of the coir logs parallel to the streambank such that the top two inches of the log are visible at mean water elevation. Additional vertical tiers can be added on the bank slope for further stabilization (Table 2).

Table 2. Interval Spacing

Slope (V:H)	Interval Spacing (ft)
1:1	5-10
1:2 > Slope > 1:1	10-20
1:4 > Slope > 1:2	20-40

Maintenance: Replacement of the rolls may be required if the log begins to break apart due to elevated water velocity or ice damage. For the first year, it is encouraged to inspect the structure after the first few floods (~ 3 visits). Monitoring can reduce to once a year after that. Over time, sediment will cover the coir logs, and vegetation will establish.

Other design considerations include installation schedule (i.e., time of year), bank preparation, trench excavation methods, backfilling, compaction and drainage.

Permitting and Regulatory Considerations

The extent of permit requirements will depend on the location and final design of the project. Consult with your local municipality, NYSDEC, and USACE before beginning any stabilization activities.

Rough Order of Magnitude Cost

The total cost is approximately \$1,000/20 linear ft. This price includes materials, transportation, and installation. Costs vary with design, site access, installation timeframe, supplier, and labor rates.

Applications and Effectiveness

• Protect slopes and encourage deposition of sediment

- Coir logs expedite vegetative cover by providing stabilized medium
- Molds to existing curvature of streambank
- Minimal disturbance of streambank

Brush Mattresses

Living ground cover of layered branch cuttings (Figure 2)

Issue Solution Addresses

Brush mattresses slow water velocities along the streambank and reduce erosion. The open space between the woody material allows for sediment deposition and water drainage. The build-up of sediment enhances the colonization of native plants.

Ideal Location

Brush mattresses are best suited for perennial streams with low to medium water velocities. Constant water flow and sunny conditions will encourage the growth of the wood cuttings. Brush mattresses can be installed on slopes 1V:2H or flatter.

Design and Construction Considerations

Site-Specific Conditions: Brush mattresses are suitable in water velocities of 5 ft/s. Brush mattresses are commonly implemented with other shoreline stabilization methods to ensure proper protection. Rock bolsters provide toe stabilization against high water velocities and shear stress, Table 3. Note, shoreline protection is dependent on vegetation establishment.

Table 2. Brush Mattresses Configuration

Brush Mattress Type	Water Velocity (ft/sec)	Shear (lb/ft ²)
Staked only without real haloton at tag	Initial Planting: < 4.0	0.4 - 3
Staked only without fock boister at toe	Established Vegetation: < 5.0	4.0 - 7.0
Challend with merely helphon at the	Initial Planting: < 5	0.8 - 4.1
Staked with rock boister at toe	Established Vegetation: < 12	4.0 - 8.0

- Materials: Live branch cuttings of a native growing species (e.g., willow) approximately 6 to 9 ft in length, biodegradable untreated twine, dead stout stakes (minimum length of 2.5 ft), 12 gauge galvanized wire, and live fascines. Additional materials may include rock bolster and geotextile fabric for toe stabilization.
- Placement: First, install the live fascines in a trench (8 to 10 inches deep and wide) at the streambank base. Place the live branches into the fascines so that the basal end (where the roots grow) faces the riverbed. Drive dead stout stakes into the brush mattress approximately 12 to 18 inches apart. Lastly, wrap metal wire around each stake and pull tightly across the live branches.
- Maintenance: Repair of the nature-based structure may be required dependent on stream velocity, flood frequency, sediment load, and timing. For the first year, inspect the structure for loose branches or live fascines after the first few floods (~ 3 visits). Add additional stakes as needed. For the first two dry seasons, water the branches every two weeks if a soaking rain does not occur during a three-week timeframe.

Other design considerations include installation schedule (i.e., time of year), bank preparation, stock type, trench excavation methods, backfilling, compaction and drainage.

Permitting and Regulatory Considerations

The extent of permit requirements will depend on the location and final design of the project. Consult with your local municipality, NYSDEC, and USACE before beginning any stabilization activities.

Rough Order of Magnitude Cost

Total cost ranges from \$38 to \$84/10 ft². This price includes materials, transportation, and installation. Costs vary with design, site access, installation timeframe, supplier and labor rates.

Applications and Effectiveness

- > Applicable for steep fast-flowing streams
- > Captures sediment and encourages vegetation establishment
- > Requires good soil to stem contact and moist conditions for branches to grow
- > Encourages conditions for colonization of native vegetation
- > Immediate protection of streambank after installation

References

Natural Resources Conservation Service (NRCS). [date unknown]. Guidance on Agroforestry System Design – Riparian Forest Buffer. In: Sustaining Agroforestry Systems for Farms and Ranches. Washington DC (US): United States Department of Agriculture (USDA). Available from: https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/landuse/forestry/sustain/guidance/?cid =nrcsdev11_009302.

Natural Resources Conservation Service (NRCS). 1996. Engineering Field Handbook - Chapter 16: Streambank and Shoreline Protection. Washington DC (US): United States Department of Agriculture (USDA). Available from: https://efotg.sc.egov.usda.gov/references/public/IA/Chapter-16_Streambank_and_Shoreline_Protection.pdf.

WISCONSIN SUPPLEMENT CHAPTER 16 - ENGINEERING FIELD HANDBOOK STREAMBANK AND SHORELINE PROTECTION STANDARD 580 COMPANION DOCUMENT 580-10 Allowable Velocity and Maximum Shear Stress

Type of Treatment	Allowable Shear Ib/sq ft	Velocity ft/sec
Brush Mattresses ¹	_	_
Staked only w/ rock riprap toe (initial)	0.8 - 4.1	5
Staked only w/ rock riprap toe (grown)	4.0 - 8.0	12
Coir Geotextile Roll ²		
Roll with coir rope mesh staked only without rock riprap toe	0.2 - 0.8	< 5
Roll with Polypropylene rope mesh staked only without rock riprap toe	0.8 - 3.0	< 8
Roll with Polypropylene rope mesh staked and with rock riprap toe	3.0 - 4.0	< 12
Live Fascine ³		
LF Bundle w/ rock riprap toe	2.0 - 3.1	8
Soils ⁴	<u>.</u>	i.
Fine colloidal sand	0.02-0.03	1.5
Sandy loam (noncolloidal)	0.03-0.04	1.75
Alluvial silt (noncolloidal)	0.045-0.05	2
Silty loam (noncolloidal)	0.045-0.05	1.75-2.25
Firm loam	0.075	2.5
Fine gravels	0.075	2.5
Stiff clay	0.26	3-4.5
Alluvial silt (colloidal)	0.26	3.75
Graded loam to cobbles	0.38	3.75
Graded silts to cobbles	0.43	4
Shales and hardpan	0.67	6
Gravel/Cobble ⁴		
1-inch	0.33	2.5-5
2-inch	0.67	3-6
6-inch	2	4-7.5
12-inch	4	5.5-12
Vegetation ⁴	-	-
Class A turf (ret class)	3.7	6-8
Class B turf (ret class)	2.1	4-7
Class C turf (ret class)	1	3.5
Retardance Class D	0.6	Design of roadside
Retardance Class E	0.35	channels HEC-15
Long native grasses	1.2-1.7	4-6
Short native and bunch grass	0.7-0.95	3-4

Type of Treatment	Allowable Shear Ib/sq ft	Velocity ft/sec
Soil Bioengineering ⁴	-	-
Wattles	0.2-1.0	3
Reed fascine	0.6-1.25	5
Coir roll	3-5	8
Vegetated coir mat	4-8	9.5
Live brush mattress (initial)	0.4-4.1	4
Live brush mattress (grown)	3.90-8.2	12
Brush layering (initial/grown)	0.4-6.25	12
Live fascine	1.25-3.10	6-8
Live willow stakes	2.10-3.10	3-10
Hard Surfacing ^₄	-	-
Gabions	10	14-19
Concrete	12.5	>18
Boulder Clusters ⁵	-	-
Boulder		
Very large (>80-inch diameter)	37.4	25
Large (>40-in diameter)	18.7	19
Medium (>20-inch diameter)	9.3	14
Small (>10-inch diameter)	4.7	10
Cobble		
Large (>5-inch diameter)	2.3	7
Small (>2.5-inch diameter)	1.1	5
Gravel		
Very Course (>1.25-inch diameter)	0.54	3
Course (>.63-inch diameter)	0.25	2.5

¹ Brush mattresses (ERDC TN EMRRP-SR-23): <u>http://el.erdc.usace.army.mil/emrrp/pdf/sr23.pdf</u>. ² Coir Geotextile roll (ERDC TN EMRRP-SR-04): <u>http://el.erdc.usace.army.mil/emrrp/pdf/sr04.pdf</u>.

³Live Fascine (ERDC TN EMRRP-SR-31): <u>http://el.erdc.usace.army.mil/emrrp/pdf/sr31.pdf</u>.

⁴ Stream Restoration Materials (ERDC TN EMRRP-SR-29): <u>http://el.erdc.usace.army.mil/emrrp/pdf/sr29.pdf</u>. ⁵ Boulder Clusters (ERDC TN EMRRP-SR-11): <u>http://el.erdc.usace.army.mil/emrrp/pdf/sr11.pdf</u>.

Additional Sources:

Wisconsin Department of Transportation, Erosion Control - Product Acceptability List (PAL): http://www.dot.wisconsin.gov/library/research/docs/finalreports/tau-finalreports/erosion.pdf

Texas Department of Transportation, Approved Products List: http://www.dot.state.tx.us/mnt/erosion/contents.htm

Reference:

Natural Resources Conservation Service (NRCS). 2009. Engineering Field Handbook - Chapter 16: Streambank and Shoreline Protection - Wisconsin Supplement. Washington DC (US): United States Department of Agriculture (USDA). Report No.: EFH Notice 210-WI-119. Available from: https:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_024948.pdf.

3. Planting Plan

Japanese Knotweed is prevalent along the shores of Buffalo Creek. The proposed floodplain bench will need to be clear cut to allow new plants to get established and prevent the Japanese Knotweed from taking over.

SECTION XXXXXX

SEEDING AND PLANTING

PART 1 GENERAL

1.01 SUMMARY

A. This Section includes seed, plantings, and associated work.

1.02 REFERENCES

A. Improvement, restoration, and mitigation activities shall be performed in substantive compliance with Sections 401 and 404 of the Clean Water Act.

1.03 PERFORMANCE REQUIREMENTS

A. The Contractor shall comply with all applicable Federal, State and Local codes, ordinances, regulations, statutes and standards.

1.04 SUBMITTALS

- A. The following items shall be submitted:
 - 1. Source and content data for all seed mixes and trees. Data for each container of seed used shall be submitted; data submitted as representative of multiple containers will not be accepted.
 - 2. Should hydroseeder be used, the Contractor shall submit all data including material and application rates.
 - 3. Submit certificates from plant nursery stock supplier for each group of live plant stock required, stating botanical name, common name, origin, age, date of packaging, and name and address of supplier. Submit at least 4 weeks prior to planting.
 - 4. Invoices for all plants and seed procured for the project shall be submitted.
 - 5. Source and content data for organic mulch (e.g., hay). If synthetic mulch is used, catalog data that includes the manufacturer, materials, and installation procedures, shall be submitted.

PART 2 - PRODUCTS

2.01 MATERIALS

- A. Seed
 - 1. Seed mixtures shall be of commercial stock of the current or prior season's crop and shall be delivered in unopened containers bearing the

Revised 12/16/2022 Printed 12/19/2022

XXXXXXX - 1

guaranteed analysis of the mix. Seed shall be labeled true to species and variety.

- 2. The seed supplier shall provide a seed analysis report including certified analyses of percent viability, percent weed seeds, and percent of other crop seed. The certifying laboratory shall be indicated on the seed tag or on associated submittals.
- 3. Seed shall meet the standards of germination and purity set by New York State or the Association of Official Seed Certifying Agencies (AOSCA).
- 4. The following weed seeds shall not be present in seed mixes:
 - a. smooth brome
 - b. tall fescue
 - c. purple loosestrife
 - d. common reed
 - e. cattail
 - f. reed canary grass
 - g. others included in the Federal Noxious Weeds list
 - 1. Areas shall be planted according to the following zonation:
 - a. Zone A = Wet Meadow
 - b. Zone B = Scrub-Shrub Wetland
 - c. Zone C = Forested Wetland
 - d. Zone D = Floodplain Meadow
 - e. Zone E = Scrub-Shrub Floodplain
 - f. Zone F = Forested Floodplain

Zone A = Wet Meadow

Table 1. Wet Meadow Seed Mix

Content (%)	Common Name	Botanical Name
30	Indiangrass	Sorghastrum nutans
20	Virginia wildrye	Elymus virginicus
10	Deertongue	Panicum clandestinum
10	Switchgrass	Panicum virgatum
8	Canada wildrye	Elymus canadensis
5	Fox sedge	Carex vulpinoidea
5	Lurid sedge	Carex lurida
4	Blue vervain	Verbena hastata
1	Soft rush	Juncus effusus
2	New England aster	Symphyotrichum novae-angliae
2	Joe pye weed	Eupatorium fistulosum
2	Boneset	Eupatorium perfoliatum
1	New York ironweed	Veronia noveboracensis

Table 2. Scrub-Shrub and/Forested Wetland Seed Mix				
Content (%)	Common Name	Botanical Name		
25	Virginia Wild Rye	Elymus virginicus		
15	Arrowwood	Viburnum dentatum		
15	Silky Dogwood	Cornus amomum		
15	Grey Dogwood	Cornus racemosa		
11	Oats	Avena sativa		
4	Fox Sedge	Carex vulpinoidea		
3	Grass Leaved Goldenrod	Euthamia graminifolia		
2	Lurid (Shallow) Sedge	Carex lurida		
2	Blunt Broom Sedge	Carex scoparia		
2	Awl Sedge	Carex stipata		
2	Path Rush	Juncus tenuis		
1	Calico Aster	Aster lateriflorus		
1	New England Aster	Aster novae-anliae		
1	Rough Avens	Geum laciniatum		
1	Sensitive Fern	Ononclea sensibilis		

Zone B = Scrub-Shrub Wetland

Table 3. Scrub-Shrub Plantings

Common Name	Latin Name	Spacing (ft)	Stock Size (gals)	% of area
Speckled alder	Alnus rugosa	10	2	30
Silky dogwood	Cornus amomum	10	2	20
Pussy willow	Salix discolor	10	2	20
Arrowwood	Viburnum dentatum	10	2	15
Grey dogwood	Cornus racemosa	10	2	5
Elderberry	Sambucus canadensis	10	2	5
Nannyberry	Viburnum lentago	10	2	5

Zone C = Forested Wetland

Table 4. Forested Wetland Plantings					
Common Name	Latin Name	Spacing (ft)	Stock Size (gals)	% of area	
Black willow	Salix nigra	10	5	25	
Eastern cottonwood	Populus deltoides	10	2	25	
American sycamore	Platanus occidentalis	10	5	10	
Pin oak	Quercus palustris	10	2	15	
Speckled alder	Alnus rugosa	10	2	20	
Basswood	Tilia americana	10	2	5	

Zone D = Floodplain Meadow

Table 5. Floodplain Meadow Seed Mix

Content (%)	Common name	Latin name
18.5	Indiangrass	Sorghastrum nutans
18	Switchgrass	Panicum virgatum
15	Virginia wildrye	Elymus virginicus
15	Canada wildrye	Elymus canadensis
6	Little bluestem	Schizachyrium scoparium
5	Partridge pea	Chamaecrista fasciculata
4	New England aster	Aster novae-angliae
3	Wingstem	Verbesina alternifolia
2	Grass Leaved goldenrod	Euthamia graminifolia
2	Tall goldenrod	Solidago altissima
2	Common milkweed	Asclepias syriaca
1.5	Purpletop	Tridens flavus
1.5	Ticklegrass	Agrostis scabra
1	Annual sunflower	Helianthus annuus
1	Autumn bentgrass	Agrostis perennans
1	Purple bergamot	Monarda media
1	Blackeyed Susan	Rudbeckia hirta
1	Cutleaf coneflower	Rudbeckia laciniata
1	Yarrow	Achillea millefolium
0.5	Common evening primrose	Oenothera biennis

Zone E = Scrub-Shrub Floodplain

Common Name	Latin Name	Spacing (ft)	Stock Size (gals)	% of area
Speckled alder	Alnus rugosa	10	2	25
Silky dogwood	Cornus amomum	10	2	5
Pussy willow	Salix discolor	10	2	5
Arrowwood	Viburnum dentatum	10	2	20
Grey dogwood Cornus racemosa		10	2	20
American hornbeam	Carpinus caroliniana	10	2	20
Nannyberry	Viburnum lentago	10	2	5

Table 6. Scrub-Shrub Floodplain Plantings

Zone F = Forested Floodplain

Table 7. Floodplain Forest Plantings

Common Name	Latin Name	Spacing (ft)	Stock Size (gals)	% of area
Black willow	Salix nigra	10	2	10
Box elder	Acer negundo	10	2	10
River birch	Picea glauca	10	2	10
Quaking aspen	Populus tremuloides	10	2	20
American sycamore	Platanus occidentalis	10	2	20
Basswood	Tilia americana	10	2	20
Speckled alder	Alnus rugosa	10	2	20

B. Plantings

- 1. Plant materials shall comply with state and federal laws with respect to inspection for plant diseases and insect infestations.
- 2. Plants shall be in accordance with the current edition of the American Standard for Nursery Stock (ANSI Z60.1-2004) unless otherwise specified.
- 3. Plants shall be free of disease and insects, eggs, or larvae, and have healthy, well-developed root systems such that the root ball does not fall apart upon plant removal from the pot or tray.
- 4. All woody seedlings shall have a heavy fibrous root system that has been developed by proper horticultural treatment, transplanting, and root pruning.
- 5. Plants shall be tagged true to species name and variety and not contain weeds.

- a. Plants shall arrive at the job site free from physical damage.
- b. Each species shall be handled and packed in a manner reviewed for that plant. Precautions that are customary in good trade practice shall be taken to insure the arrival of the plants at the Site in good condition. Plants that arrive dried out, exposed to excessive heat, or that have been in storage for protracted periods of time, will not be accepted. If, upon inspection, the plants or root stocks display mold or decay, the material will not be accepted.
- C. Existing live native trees and shrubs of the following species that are located within the project disturbance limits may be salvaged to the extent practicable prior to clearing and grading for use within the mitigation area when grading is complete. Species included on the "New York State Prohibited and Regulated Invasive Plants" list shall not be salvaged and include:
 - 1. European alder (Alnus glutinosa)
 - 2. Honeysuckle (Lonicera spp.)
 - 3. Japanese barberry (Berberis thunderghii)
 - 4. Multiflora rose (Rosa multiflora)
 - 5. Buckthorn (Rhamnus spp,)
 - 6. Norway maple (Acer platanoides)
 - 7. Norway spruce (Picea abies)
- D. Salvaging may include staging of shrub clumps complete with root systems. Methods of material staging to promote survival is the Contractor's responsibility. Plant material shall be stockpiled adjacent to the work area to minimize transport distance. Materials shall be placed in the mitigation area within wetland areas as soon as practicable after completion of grading. Tree or shrub clumps shall not be separated but shall be moved as an individual unit.
- E. The Contractor shall remove and maintain the full root ball (i.e., extending outward to the dripline and downward to the extent of the fibrous root network) of the salvaged plants to the extent practicable.
- F. Areas that don't receive transplanted salvaged material shall be planted with the tree and shrub species provided in the Tables in Section 2.
- G. The numbers of trees and shrubs in the tables shall be planted at a density of 450 stems per acre, alternating species to achieve distribution throughout.
- H. Potted trees and shrubs and salvaged transplants shall be planted from mid-April to late May or from September through December.
- I. Seed mixes shall be from Ernst Conservation Seeds or equivalent and shall be placed after completion of tree and shrub plantings where applicable.
- J. Seed shall be sown between March 15th and May 15th or between August 15th and September 30th, except as otherwise approved by the Engineer. Areas requiring stabilization outside of these timeframes shall be seeded with an oats cover crop applied at a rate of 20 pounds per acre and mulch shall be applied.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Plant materials shall be installed in Planting Zones per the depths and quantities specified in Part 2 of this specification.

3.02 TREE AND SHRUB PLANTINGS

- A. Individual size #2 specimens of the species identified in Section 2 shall be planted at a density of one per 100 square feet (436 trees per acre) in the areas treated with glyphosphate, a minimum of two weeks after treatment. The numbers in the tables shall be planted, alternating species and trees and shrubs to achieve distribution throughout the zones and vary the layering. Tree and shrub species mixes shall be planted in the specified zones.
- B. Alternative species and/or seed mixes may be used with Engineer approval only.
- C. Potted trees and shrubs shall be planted in the floodplain from mid-April to late May or from September through December.
- D. Potted trees and shrubs shall be planted in the wetland zones between May and September.
- E. The planting hole diameter shall be at least 1.5 times the diameter of the root ball and dug to a depth such that the root flare is even with the finished grade when the plant is placed in the hole.
- F. If the planting hole is initially dug too deeply, soil shall be added back into the hole to attain the proper elevation.
- G. 100 grams of slow-release 10-10-10 fertilizer shall be placed in each planting hole prior to placing woody potted stock.
- H. Burlap and wire baskets shall be removed from root balls prior to planting.
- I. Cut roots encircling the root ball with a sharp knife and install the plant as soon as possible once it has been removed from the pot.
- J. Backfill the planting hole and firmly work soil into and around the root ball with care taken to fill in air spaces.
- K. Tamp the backfill with foot pressure sufficient to prevent the root ball from shifting or leaning.
- L. Form earthen water-holding saucers (4 inches deep with a similar diameter as the planting hole) around each plant.
- M. In the floodplain zones, water all plants immediately after planting. Apply water directly to the root ball and adjacent soil. Fill the water holding saucer with water. Watering shall be in such a manner as to prevent exposing plant roots.
- N. Following installation, remove all tags, labels, strings, etc. from all plants.

3.03 SEED AND MULCH

- A. Hand broadcast of the seed mixes shall be performed during two seasonal windows: April 1 to June 15, October 15 through December 1, or as otherwise practicable and reviewed by the Engineer. If site soils require stabilization at times outside of these dates, they shall be temporarily mulched using one ton per acre of straw and 100 pounds per acre of oats.
- B. Seeding shall not be done during windy weather (greater than 5 mph or as reviewed by the Engineer).
- C. In forested and scrub-shrub zones, seeding shall be completed after tree and shrub placement.

- D. Hydroseeding may be accepted as an alternative method of applying seed and mulch. The Contractor shall submit all data regarding materials and application rates to the Engineer for review.
- E. Mulch shall be hand or machine spread over seeded areas to form a continuous blanket over the seed bed.
- F. If straw mulch or similar is used, approximately 1 to 1.5 inches uniform thickness at loose measurement shall be applied. Excessive amounts or bunching of mulch will not be permitted.
- G. If hydromulch is used, it shall be installed at a rate recommended by the Manufacturer.
- H. Unless otherwise specified, mulch shall be left in place and allowed to disintegrate.

3.04 MONITORING AND MAINTENANCE

- A. The Contractor shall warranty the plantings (potted stock) and seed for a period of one year from the date of installation. If planted in the spring, the warranty shall be assessed based on the survivability observed during the growing season the following year (i.e., after leaf-out). Based on the results of the Engineers' census in Year 1 of the monitoring period, the Contractor shall replace deceased planted stock or reseed areas based on the following criteria:
 - a. Minimum 85% survival of planted stock.
 - b. Minimum 80% ground coverage of seeded areas.
- B. Replacements shall be of the same size originally planted and subject to the firstyear maintenance efforts prescribed herein.
- C. Alternative species and/or seed mixes may be used during replacement with Engineer approval only.

END OF SECTION

4. Cost Estimate

Project:	Buffalo Creek Floodplain Reconnection
Owner:	Buffalo Niagara Waterkeepers
County:	Erie

Municipality: Town of West Seneca

PROJECT COST ESTIMATE						
Item/Description	Qty	Units		Unit Cost		Amount
Flood Benches						
Formation of flood bench					\$	2,931,000
Excavation and Material Disposal	76,000	CY	\$	25	\$	1,900,000
Clearing/Grubbing	9	AC	\$	20,000	\$	180,000
Seeding and/or planting	1	LS	\$	614,000	\$	614,000
Temporary sediment and erosion control	2,700	LF	\$	88	\$	237,000
Land acquisition	24	AC		\$3,500	\$	83,000
Walking Trail Restoration					\$	109,000
Earth Excavation	1500	CY	\$	35.00	\$	53,000
Compacted Granular Fill	900	CY	\$	42.00	\$	38,000
Fine Grading & Compacting	3,600	SY	\$	5.00	\$	18,000
Bank Stabilization Features	2,700	LF		\$100	\$	270,000
Allowance for utility owner requirement					\$	50,000
	Construction Cost Subtotal				\$	3,443,000
General Conditions / Project Management	10%					\$345,000
Contractor OH&P	15%					\$569,000
Construction Contingency	30%					\$1,308,000
Total Construction Cost						\$5,665,000
Summan			_		_	
Construction Costs						\$5 665 000
Engineering (Not including additional modeling & ice iam analysis)	10%					\$567.000
Construction Management	10%					\$567,000
Total						\$6,799,000